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Abstract

In this report, we study the recent work of Burklund, Hahn, and Senger in [BHS19], on a
classification problem of highly connected manifolds. The goal of this project was to under-
stand the classical study of the problem, and also the referenced novel approach to it. This
study was done as a Project outside courses’ scope (PUK) during Block 2 of the course 2021-2022
at the University of Copenhagen, under the supervision of Søren Galatius.
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1. INTRODUCTION

The problem of the classification of closed, (n− 1)-connected, 2n dimensional smooth manifolds
has been one of the success stories of algebraic and geometric topology in the last 60 years. This
problem was first introduced and studied by Wall in [Wal67]. His key insight was to instead
remove a disc from our objects of interest and classify compact, (n − 1)-connected, 2n smooth
manifolds with boundary homeomorphic to a sphere. These objects were then fully classified in
[Wal67] by algebraic data (called an n-space). The final piece of the puzzle was to classify all the
different ways one could glue the removed disc back.

Meanwhile, in [KM63] Kervaire and Milnor found exotic spheres, that is smooth manifolds
which are homeomorphic but not diffeomorphic to the standard sphere m-sphere. Moreover,
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they proved that the set of such objects Θm forms a group under connected sum, and found an
exact sequence, which in our case m= 2n− 1 is of the form

0 −→ bP2n −→ Θ2n−1 −→ π2n−1S/ im J .

This provided a new formulation for the missing step in Wall’s program. We can rephrase his
question to finding which exotic spheres can be boundaries of compact, (n − 1)-connected, 2n-
manifolds.

1.1. The work of Stolz and the reduction to homotopy theory

This problem was greatly developed in the work of Stolz in [Sto85]. His key insight was to use
(relative) Pontryagin-Thom theory to reduce the problem to a purely homotopy theoretic one. Let
us describe his approach.

Let W be a compact, (n− 1)-connected, 2n-manifold such that ∂W = Σ ∈ Θ2n−1. In [KM63],
Kervaire and Milnor proved that every exotic sphere is stably paralelizable. In other words, the
classifying map for the stable tangent bundle of a homotopy sphere τΣ : Σ → BO admits a lift
lΣ : Σ→ EO. Consequently, such a pair (W,Σ) will induce the following commutative diagram of
spaces

Σ EO

W BO.

lΣ

τW

We can see that the inclusion Σ ,→ W is an (n − 1)-connected map. By obstruction theory,
since the pair (Σ, W ) is (n−1)-connected and the truncation map τ≥n BO→ BO is n-coconnected
it follows that all obstruction classes for a lift W → τ≥n BO vanish. Thus we have the following
partial lift.

Σ EO

τ≥nBO

W BO.

lΣ

τW

lW

The pair (W,Σ) equipped with the lifts lW and lΣ, represents an element of the relative cobor-
dism group Ωτ≥n BO,EO

2n , for which we use the notation Ω〈n〉,fr2n . The relative Pontrjagin-Thom con-
struction gives an equivalence

Ω
〈n〉,fr
2n

≃
−→ π2n(MO〈n〉,S).

Under this correspondence, the forgetful map taking [W,Σ, lW , lΣ] to [Σ, lΣ] ∈ Ωfr
2n−1 corresponds

to the boundary map
π2n(MO〈n〉,S)→ π2n−1(S).

Therefore, our problem is reduced to finding the image of this map, which is equal to the kernel
of the unit map

π2n−1S→ π2n−1 MO〈n〉

in the long exact sequence. The strategy of Stolz was to analyse the kernel of this map via the
Adams spectral sequence.
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1.2. Recent developments by Galatius – Randall-Williams, and Burklund – Hahn – Senger

The approach of Stolz in [Sto85]was very succesful, but left some cases unknown. For example, it
was concluded that if n is congruent to 1 modulo 4, then this kernel was at most generated by one
element modulo the image of J . Many decades later, Galatius and Randall-Williams conjectured
in their work calculating abelianisations of mapping class groups [GR16, Conjecture A] that this
element was in fact trivial modulo the image of J . A proof of this conjecture in many cases was
obtained in recent work of Burklund, Hahn and Senger [BHS19], and it is the centre of this report.

Theorem 1.1 ([BHS19]). For all natural numbers n> 31, the kernel of the unit map

π8n−1S→ π8n−1 MO〈4n〉

is the image of the J-homomorphism.

Their key insight was to use recent developments in stable homotopy theory to encode and
keep track of much of the same data on the Adams spectral sequence that Stolz was working
with. This was possible due to work by Pstra̧gowsky in [Pst18] introducing synthetic spectra. The
goal of this report is to explore different aspects of this new approach to prove results such as the
above.

To conclude, we return to our main motivating problem. By the Milnor-Kervaire exact se-
quence, we know that if Σ ∈ Θ8n−1 lies in the kernel of the last map, then it came from bP8n

Therefore, we have the following corollary.

Corollary 1.2. Let n> 31, and W be a compact, (4n− 1)-connected, 8n dimensional smooth man-
ifold with boundary. If ∂W is homemorphic to a sphere, then it bounds a parallelizable manifold.

1.3. Outline of the report

In Section 2, we explore a modern definition of Thom spectra based on the work of Ando, Blum-
berg, Gepner, Hopkins and Rezk in [And+14]. This definition and the consequent description as
a bar construction in 4 will be the starting point of the approach to the study of the unit map that
we follow. We see two advantages of this description. Firstly, from this bar construction we obtain
a spectral sequence converging to the homotopy of its realisation, namely the Thom spectrum.
Secondly, the associated graded terms of the filtration by skeleta are increasily more connected,
and, therefore, for our range of interest we can restrict to the second step of this filtration.

In Section 3.1, we study this spectral sequence in the desired range, and by referencing crucial
calculations done in [BHS19], we will be able to reduce the study to a single differential in the
second page. In order to do this, we will describe this differential as a Toda bracket; we provide
a systematic way of doing so in Section 3.2. The goal is then to find a lower bound for the
Adams filtration of this bracket that implies that it lies in the image of the J -homomorphism. In
the work of Burklund, Hahn and Senger in [BHS19], the use of Pstra̧gowsky’s syntethic spectra
facilitated the study of Adams filtrations of homotopies and Toda brackets. In Section 3.4, we
present the theory of synthetic spectra needed from [Pst18] and [BHS19, Chapter 9]. We finish
the proof in Section 3.6 by using synthetic spectra along with classical and modern upper bounds
on non-trivial elements in coker(J).

2. THOM SPACES AND THOM SPECTRA

Definition 2.1. Let ξ: E→ B be a spherical fibration together with a section s. Define the Thom
space Th(ξ) to be the quotient space E/B = cof(s).
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Example 2.2. Let ξ: E→ X be a rank n vector bundle. Apply one-point compactification to each
fiber, and denote the obtained spherical fibration by Sξ → B. The points at infinity specify a
section s : B→ Sξ. The space Th(Sξ) is called the Thom space of ξ and denoted by Th(ξ).

Now we show how we can build a spectrum from a vector bundle, or more generally a virtual
vector bundle. Notice that Thom spaces are canonically pointed. Let f : B → BO be a map of
spaces, and for each natural number n define Bn as the pullback

Bn B

BO(n) BO.

fn

⌟
f

Let f ∗n γ
n be the vector bundle classified by fn, where γn denotes the universal rank n-vector bundle.

Notice that the following pullback square at the left

Bn Bn+1 B

BO(n) BO(n+ 1) BO.

fn

⌟
fn+1
⌟

f

induces a map of vector bundles f ∗n γ
n⊕ε1→ f ∗n+1γn+1, for the stabilization map BO(n)→ BO(n+1)

induces a map γn ⊕ ε1→ γn+1, and this is pulled back along fn and fn+1.
For any vector bundle ξ, there is a homeomorphism ΣTh(ξ) ∼= Th(ξ ⊕ ε1). Therefore, the

sequence of Thom spaces {Th( f ∗n (γ
n)}n∈N along with the stabilization maps above form a pre-

spectrum.

Definition 2.3. We call the prespectrum {Th( f ∗n γ
n)}n∈N the Thom prespectrum of f : B→ BO. We

call the associated spectrum
M f := colimnΣ

∞−n(Th( f ∗n γ
n))

the Thom spectrum of f .

For example, if a vector bundle ξ: E→ B is classified by a map f : B→ BO(n), then the Thom
spectrum of f : B→ BO(n)→ BO is the suspension spectrum of Th(ξ).

Definition 2.4. We call the Thom spectrum of the identity id: BO → BO the universal Thom
spectrum, denoted MO.

In Section 3, we will use another description of Thom spectra. For this, we first introduce the
J -homomorphism.

2.1. The J -homomorphism

For every natural numbers n and i ≥ 2, the classical J -homomorphism is a homomorphism
πiSO(n) → πiO(n) → πn+iS

n, constructed via the Hopf construction. Following [Ati66], we
can describe this map in the following way. For a natural number n, write Hn for the group
of homotopy self-equivalences of Sn which preserve the point at infinity. Since every orthogo-
nal transformation Rn → Rn extends to a homeomorphism of (Rn)+ ∼= Sn onto itself, we have a
natural map

O(n) −→ Hn −→,−→ ΩnSn;

The second map is the inclusion of the two connected components of ΩnSn containing id and − id,
respectively. Taking homotopy groups we get a morphism

πiO(n) −→ πiΩ
nSn ∼= πn+iS

n.
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This is the (unstable) J-homomorphism. However, notice that the maps O(n)→ Hn are compatible
with the stabilization maps O(n)→ O(n+1), and the suspension morphism πn+iS

n→ πn+1+iS
n+1.

Hence, taking colimits we get a map

J : O −→ H ≃ GL1(S)

which on homotopy groups recovers the stable J-homomorphism

J : πiO −→ πiS.

Here, GL1(S) is the∞-group of units of S, as in [And+14]. A model for this E∞ space is as the
connected components of Ω∞S containing id and − id, equipped with its multiplicative structure
coming from S. Note that πi GL1(S)≃ πiS.

We can even realize J as a map of infinite loop spaces, and thus J deloops once to

BJ : BO −→ BH ≃ B GL1(S).

Since B GL1(S) classifies stable spherical fibrations, this map is the universal in the sense that
the classifying map of any (stable) spherical fibration which comes from a vector bundle factors
through J .

2.2. Thom spectra as a tensor product

We now write the Thom space of a vector bundle in a different way, which we will use for Section
3. Let ξ: E → B be a rank n vector bundle, and f : B → BO(n) its classifying map. Then ξ is
equivalent to the vector bundle ξ′×O(n)Rn, associated to the principal O(n)-bundle defined by the
pullback

ξ′ EO(n)

X BO(n).

⌟

f

(1)

Then the spherical fibration associated to ξmay be rewritten as ξ′×O(n)S
n, where the second factor

is the one-point compactification of Rn 1. Now, quotienting out with the section at infinity is the
same thing as adding a disjoint basepoint to ξ′ and then forming the smash product ξ′+ ∧O(n) S

n.
Indeed, the later amounts to quotienting the subspace ξ′+×{∞} of ξ′+×O(n)S

n, which is compatible
with the base-point preserving acion of O(n) on Sn; and then also quotienting the copy {+} × Sn

we have added to the original product. We have shown that

Th(ξ)≃ ξ′+ ∧O(n) S
n. (2)

Let us look at the modern definition due to Ando, Blumberg, Gepner, Hopkins and Rezk in
[And+14].

Definition 2.5. Let f : B → BO be a map of infinite loop spaces. The Thom spectrum M f of
f is defined as the homotopy pushout of the following diagram in the model category Elmen-
dorf–Mandell–Kriz–May commutative S-algebras [Elm+97]:

Σ∞+ GL1 S S

Σ∞+ hofib( f ) M .
⌜

1We have extended the action of O(n) using that an orthogonal transformation Rn→ Rn extends to a homeomor-
phism of (Rn)+ ∼= Sn onto itself. Note that this action preserves the base-point at infinity
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Remark 2.6. Given a map f : B→ BO, we know that

ξ′ EO E GL1(S)

B BO B GL1(S).

⌟ ⌟
can

f J

(3)

Therefore in the above definition, hofib( f )≃ ξ′, as in 1. We obtain another description of M f :

Σ∞+ B Σ∞+ GL1 S S

Σ∞+ ∗ ≃ S Σ∞+ hofib( f ) M f
⌜ ⌜

By [Elm+97, Proposition 1.6], this homotopy pushout expresses M f as the derived tensor product

M f ≃ Σ∞+ hofib( f )∧Σ∞+ GL1 S S;

cf. equation 2. This is the model we will use throughout the rest of this report.

3. ON THE BOUNDARIES OF HIGHLY CONNECTED MANIFOLDS

The goal of this section is to prove:

Theorem 3.1 ([BHS19]). For all natural numbers n> 31, the kernel of the unit map

π8n−1S→ π8n−1 MO〈4n〉

is the image of the J-homomorphism.

First, we will reduce the proof of the Theorem to the vanishing of a differential of a Bar spectral
sequence for MO〈4n〉 – Lemma 3.5 –; then we will reduce this to the vanishing of a Toda bracket
ω ∈ π8n−1S/ im J – Lemma 3.8 –; and, finally, we will study this Toda bracket using synthetic
spectra to conclude that it vanishes with the dimension assumptions in the statement above.

Following [BHS19], we will study the map π8n−1S→ π8n−1 MO〈4n〉 via the spectral sequence
associated to the bar-construction realizing the model for the Thom spectrum MO〈4n〉 given in
[And+14, Definition 4.1], as the following homotopy pushout in the model category Elmen-
dorf–Mandell–Kriz–May commutative S-algebras [Elm+97]

Σ∞+ Ω
∞Ωτ≥4nko Σ∞+ Ω

∞ gl1(S) S

Σ∞+ Ω
∞∗ ≃ S MO〈4n〉.

⌜

The top-left horizontal map is the composition of the desuspension of a (4n−1)-truncation of ko
with the J -homomorphism – precisely the infinite delooping of BJ described in Section 2.1 –

Ω∞Ωτ≥4nko −→ Ω∞Ωko
J
−→ Ω∞ gl1(S).

If we denote by J+ and ε the maps of E∞ rings in the pushout diagram, then the above takes the
form

Σ∞+ O〈4n− 1〉 S

S MO〈4n〉,

J+

ε
⌜
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where O〈4n− 1〉 := Ω∞Ωτ≥4nko. This notation should cause no confusion for one can observe
that this space is equivalent to the (4n− 1)-truncation of O.

By [Elm+97, Proposition 1.6], the homotopy pushout is the derived tensor product, which can
be modeled by the bar-construction: MO〈4n〉 ≃ |Bar(S,Σ∞+ O〈4n− 1〉,S)|, where the face maps
of Bar take the form

· · · Σ∞+ O〈4n− 1〉⊗2 Σ∞+ O〈4n− 1〉 S,
1⊗J+

m
ε⊗1

J+
ε (4)

where m denotes the multiplication map given by the E∞ structure of Σ∞+ O〈4n− 1〉.

3.1. The Bar spectral sequence

Consider the skeletal filtration of the simplicial spectrum given by the bar construction,

S −→ Bar≤1 −→ Bar≤2 −→ · · · →MO〈4n〉.

In this section we will study the map π8n−1S → π8n−1 MO〈4n〉 via a spectral sequence induced
by this filtration, and reduce the main theorem 3 to the vanishing of a differential of the spectral
sequence 3.5.

For a general spectrum X with a filtration X = ∪s FsX , we consider the spectral sequence with
signature

E1
s,t = πs+t(FsX/Fs−1X ) =⇒ πsX .

For a skeletal filtration arising from a simplicial spectrum X•, we can identify the cofibres so that
the entries in the first page are

E1
s,t = πt(X s) =⇒ πs|X |,

and the t-th row E1
•,t identifies with the normalised complex of the simplicial abelian group πt X•.

We will now show that the associated graded terms of the filtration 3.1 are highly connected.
Since we are interested in the map π8n−1S→ π8n−1 MO〈4n〉 in homotopy groups of low degrees,
this will allow us to restrict our study of it to Bar≤2.

Lemma 3.2. The canonical map Bar≤2→MO〈4n〉 is (12n− 1)-connected.

Proof. The result follows because the maps Bar≤k−1 → Bar≤k are (4nk − 1)-connected. To show
this, we fix k ≥ 1, and show that the cofibre ΣkΣ∞+ O〈4n−1〉⊗k of this map is (4nk−1)-connected.

First of all, Σ∞+ O〈4n− 1〉 is (4n− 2)-connected because O〈4n− 1〉 is. Its k-th tensor power
is (4nk − k − 1)-connected because Σ∞+ : Spaces → Sp is symmetric monoidal, and if X , Y are
pointed spaces which are n-connected and m-connected respectively, then X ∧ Y is (n+m+ 1)-
connected. Finally, taking suspension k times adds k-degrees of connectivity. Thus, we conclude
that ΣkΣ+O〈4n− 1〉⊗k is (4nk− 1)-connected.

Consequently, for our interests, we may only consider the spectral sequence induced by the
filtration S → Bar≤1 → Bar≤2, and it takes the following form in the E1-page, concentrated in
three rows:
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8n− 1 π8n−1S π8n−1Σ
∞O〈4n− 1〉 · · ·

8n− 2 π8n−2S π8n−2Σ
∞O〈4n− 1〉 π8n−2Σ

∞O〈4n− 1〉⊗2

8n− 3 · · · · · · π8n−3Σ
∞O〈4n− 1〉⊗2

0 1 2

1⊗ J −m

J

J

In [BHS19, §4], the authors calculate these groups, using Goodwillie towers. We summarize
these calculations in the following result.

Proposition 3.3. Let x be a fixed generator of π4n−1Σ
∞O〈4n− 1〉 ≃ Z. The following statements

hold:

1. The spectrum Σ∞O〈4n− 1〉⊗2 is (8n− 3)-connected.

2. The group π8n−2Σ
∞O〈4n−1〉⊗2 is isomorphic to Z{x⊗ x} where x ∈ π4n−1Σ

∞O〈4n−1〉 ≃ Z
is a generator.

3. The group π8n−2Σ
∞O〈4n− 1〉 is cyclic of order 2 and generated by x2,

4. The element xJ(x) is 0 in π8n−2Σ
∞O〈4n− 1〉.

Proof. The first claim follows from the fact that A⊗ B is (n+m+ 1)-connected if A and B are n
and m-connected spectra, respectively. The second claim stems from the Hurewicz isomorphism
theorem; the third is [BHS19, Corollary 4.8]; and the forth is [BHS19, Lemma 4.10].

Therefore, we can simplify the above spectral sequence as shown below.

8n− 1 π8n−1S π8n−1Σ
∞O〈4n− 1〉 · · ·

8n− 2 π8n−2S Z/2{x2} Z{x ⊗ x}

8n− 3 · · · · · · 0

0 1 2

1⊗ J −m

J

J

By the forth result in 3.3, we see that the kernel of 1⊗J−m is generated by 2(x⊗x) and the map
is surjective. To conclude the computation of the E2 page in this range, we present the following
result that resolves the possible confusion between the map J and the classical J -homomorphism.

Theorem 3.4 ([BHS19, Theorem 4.11]). If 4n− 1≤ k ≤ 8n− 1, then the image of

J : πkΣ
∞O〈4n− 1〉 −→ πkS

agrees with the image of the classical J-homomorphism described in Section 2.1.

8



Now we can identify how the entries of interest look in the E2 page of the spectral sequence,
as in the following diagram.

8n− 1 coker(J)8n−1 · · · · · ·

8n− 2 coker(J)8n−2 0 Z{2(x ⊗ x)}

8n− 3 · · · · · · 0

0 1 2

d2

We conclude this reduction with the following Lemma.

Lemma 3.5. Let n be a natural number. The kernel of the unit map π8n−1S→ π8n−1 MO〈4n〉 is the
image of the J-homomorphism if the differential d2 : Z{2(x⊗ x)} → coker(J)8n−1 in the Bar spectral
sequence for MO〈4n〉 vanishes.

Proof. Note that no other non-trivial higher differentials apart from the depicted above will hit
the line of dimension 8n−1, on which only coker(J)8n−1 is left. Therefore, by convergence of the
spectral sequence, the edge homomorphism

coker(J)8n−1/d
2 ≃ E3

0,8n−1 −→ E∞0,8n−1 ≃ π8n−1 Bar≤2 ≃ π8n−1 MO〈4n〉

is an isomorphism.
By construction of the spectral sequence, the above map is induced on quotients by the map

F0(π8n−1 MO〈4n〉) −→ E∞0,8n−1,

from the 0-th filtration step of the target to the E∞ page; that is, F0(π8n−1 MO〈4n〉) is the image
of the map induced by the inclusion of the 0-th skeleton S, which coincides with the unit map
because they are both maps in the category of S-algebras, where S is initial.

All in all, the kernel of the unit map in the statement is the kernel of the quotient map

π8n−1S≃ E1
0,8n−1 −→ E3

0,8n−1 ≃ coker(J)8n−1/d
2,

which is exactly J if and only if d2 vanishes.

3.2. Toda brackets as spectral sequence differentials

The goal of this section is to provide a model for the element d2(2(x⊗x)) ∈ coker(J)8n−1. However,
we may work in higher generality. Let X be a spectrum and

· · · −→ Fs−1X −→ FsX −→ Fs+1X −→ · · · −→ X

a filtration on X . The associated spectral sequence takes the form

E1
s,t = πs+t(FsX/Fs−1X ) =⇒ πsX .

We can describe d1 : E1
s,t → Es−1,t as induced under πs+t by the map of spectra

d1 : Fs/Fs−1
k
−→ ΣFs−1

j
−→ Σ(Fs−1/Fs−2),
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where k is the connecting homomorphism, and j is the quotient map. To describe the second
differential d2 : E2

s,t → E2
s−2,t+1, let x ∈ E1

s,t such that d1 ◦ x ≃ 0, that is, it has a lift to ΣFs−2 as
depicted below.

Ss+t hofib d1 ΣFs−2 Σ(Fs−2/Fs−3)

Fs/Fs−1 ΣFs−1

Σ(Fs−1/Fs−2),

x

x̃ can j

d1

k

j

(5)

where can is the canonical map to the homotopy fiber of j. Then d2([x]) ∈ E2
s−2,t+1 can be

represented by the composite in the top row in the picture above. We next show how we can
model d2([x]) as a Toda bracket.

Construction 3.6. Consider the sequence of maps

Ss+t x
−→ FsX/Fs−1X

d1

−→ Σ(Fs−1X/Fs−2X )
d1

−→ Σ2(Fs−2X/Fs−3X ). (6)

By assumption, the composition d1 ◦ x is nullhomotopic; pick a nullhomotopy f : d1 ◦ x ≃ 0.
We also know that d1 ◦ d1 is nullhomotopic; moreover, there is a canonical nullhomotopy of
d1◦d1 = j◦k◦ j◦k, namely a : k◦ j ≃ 0. We will associate to this data a map z : Ss+t → Σ(Fs−2/Fs−3),
from the source to loops of the target.

With the data above, we can lift the maps in 6 as follows.

hofib(d1) ΣFs−2X hofib(d1)

Ss+t FsX/Fs−1X ΣFs−1X Σ(Fs−1X/Fs−2X ) Σ2(Fs−2X/Fs−3X ).

can

i

x

f̃

k j

ã

j◦k=d1

Moreover, there is also a nullhomotopy of the map

ΣFs−2
i
−→ ΣFs−1 −→ hofib d1 −→ Σ(Fs−2/Fs−3),

namely a composition of ã and the canonical for j ◦ i ≃ 0. Therefore, we can similarly produce
a lift j′ to the homotopy fiber of hofib(d1) → Σ(Fs−1/Fs−2), that is Σ(Fs−2/Fs−3), and obtain the
following folded diagram

Σ(Fs−2X/Fs−3X )

hofib d1 hofib d1

Ss+t FsX/Fs−1X Σ(Fs−1X/Fs−2X ) Σ2(Fs−2X/Fs−3X ).

j′◦can

x d1 d1

(7)

We consider the map

z : Ss+t −→ hofib d1
j′◦can
−→ Σ(Fs−2X/Fs−3X ),

and refer to it as a Toda bracket. Now we show that z represents d2([x]) ∈ E2
s−2,t+1.
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Lemma 3.7. In the above construction, the element [z] is equal to d2([x]) in E2
s−2,t+1, and is inde-

pendent of the homotopy d1 ◦ x ≃ 0 chosen.

Proof. By examining the description of d2 in 5 and the result 7 of the above construction, to prove
the first part of the statement it suffices to show that the cofibre map ΣFs−2X → Σ(Fs−2X/Fs−3X )
in 5 is homotopic to the lift j′ in 7. Notice that by construction, j′ is obtained as the map induced
on fibers as follows:

ΩA hofib(k) Y A

ΩZ hofib(d1) Z Z ,

j′

k

j

d1

where we write Y → A→ Z for

d1 : Σ(Fs−1X/Fs−2X )
k
−→ Σ2Fs−2X

j
−→ Σ2(Fs−2X/Fs−3X ).

In other words, it is the map induced by j between the corresponding stages in the Puppe se-
quences, that is, Ω j. This concludes the proof of the first part.

Finally, for the second part of the statement, notice that another choice of homotopy d1◦ x ≃ 0
only differs by a loop in Σ(Fs−1/Fs−2), so that the lift differs by a map Ss+t → Fs−1/Fs−2, which
composed with d1 represents an element of E2

s−2,t+1. However, classes in the image of d1 have
been quotiented out in E2 by construction.

3.3. The problem as a Toda bracket

We apply Lemma 3.7 to the Bar spectral sequence for MO〈4n〉. In particular, we can model the
element d2(2(x ⊗ x)) ∈ coker(J)8n−1 as the Toda bracket [z] associated to the diagram

S8n−2 Σ∞O〈4n− 1〉⊗2 Σ∞O〈4n− 1〉 S,
2(x⊗x) 1⊗J−m

f

J

a

(8)

where f is an arbitrary nullhomotopy d1 ◦ 2(x ⊗ x) ≃ 0, and a is the canonical nullhomotopy
d1 ◦ d1 ≃ 0. Similarly to Section 3.1, we are identifying the differentials of the E1 page of the
spectral sequence at the level of spectra with those of the normalized filtered spectrum. We
claim that, under this identification, the canonical nullhomotopy d1 ◦ d1 ≃ 0 corresponds to the
canonical nullhomotopy J ◦ (1⊗ J −m)≃ 0 given by the structure on J as a map of (non-unital)
E∞ rings2. Therefore:

Lemma 3.8. Let n be a natural number. The kernel of the unit map π8n−1S→ π8n−1 MO〈4n〉 is the
image of the J-homomorphism if the Toda bracket [z] ∈ coker(J)8n−1 associated to diagram 8 as in
Construction 3.6 vanishes.

Proof. It follows from Lemma 3.5, and the observation that [z] is in the image of an element
generating the source of d2.

The strategy for the proof of the main theorem will be to choose f in such a way that one can
guarantee that, for every prime number p, the Toda bracket [z] has higher HFp-Adams filtration
than any non-zero element in coker(J)8n−1. We will find such “ f ” in the∞-category of synthetic
spectra.

2The vanishing of the differentials d1 ◦ d1 = 0 in the normalised chain complex is a consequence of the simplicial
identity d0d0 = d1d0. The face maps of the bar construction satisfy this identity exactly because J+ is a ring map.
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3.4. Synthetic spectra

In this section, E will always be an Adams-type homotopy associative ring spectrum, the kind of
spectra for which Adams wrote the Künneth, universal coefficients, and Adams spectral sequences.
To define what this means, let us start with the following.

Definition 3.9. Let E be a homotopy associative ring spectrum. We say that a spectrum X is E-
projective if E∗X is projective as a π∗E-module. We say that X is finite E-projective if it is finite and
E∗X is finitely generated and projective overπ∗E. We denote the∞-category of finite E-projective
spectra by Spfp

E .

For example, the spheres are finite E-projective for any choice of homology theory E. In fact,
given a map of spectra E→ E′ realizing to one of algebras in the homotopy category, every (finite)
E-projective spectrum is also (finite) E′-projective.

Definition 3.10. We say that a homotopy ring spectrum E is Adams-type if it can be written as a
filtered colimit E ≃ colim Eα of finite S-projective spectra such that for each Eα the natural map

E∗Eα −→ Homπ∗E(E∗Eα,π∗E)

is an isomorphism.

Let E be an Adams-type ring spectrum. In [Pst18], a stable, presentable∞-category SynE is
constructed, together with a functor

νE : Sp→ SynE,

called the synthetic analogue functor. Moreover, it admits a symmetric monoidal structure, pre-
serving colimits in each variable, and promoting the restriction νE : Spfp

E → SynE to a symmetric
monoidal functor – see [Pst18, Proposition 4.2].

Nevertheless, for an arbitrary pair of spectra X , Y , the functor ν admits a lax symmetric
monoidal structure, which gives a map

νEX ⊗ νEY −→ νE(X ⊗ Y ).

In fact, this map is an equivalence when X or Y can be written as a filtered colimits of finite
projectives [Pst18, Lemma 4.24]. We obtain the following important examples, and the only
which we will make use of.

Example 3.11. For each prime number p, the ring spectrum E = HFp is of Adams-type, and every
finite spectrum is finite HFp-projective. Therefore, νHFp

: Sp→ SynE is symmetric monoidal.

Definition 3.12. Let t, w be integers. The bigraded sphere St,w is defined to be Σt−wνESw. For a
synthetic spectrum X , the bigraded homotopy groups are defined to be the abelian groups

πt,w(X ) := π0 Map(St,w, X ).

Tensoring with the bigraded spheres defines autoequivalences Σt,w := −⊗S t,w : SynE → SynE.
This is due to the fact that, on the one hand, the suspension functor commutes with the cocontin-
uous tensor product and is an autoquivalence of the stable∞-category SynE; on the other hand,
tensoring with spheres defines an autoequivalence of Sp, and νE underlies a symmetric monoidal
functor when restricted to finite E-projective spectra.

We denote by τ the canonical limit comparison map

τ: νE(ΩS) −→ ΩνE(S).

In terms of bigraded spheres, the suspension of τ takes the form τ: S0,−1→ S0,0. We will need the
following result to go from spectra to synthetic spectra, and back, where we say that a synthetic
spectrum is τ-invertible if τ: Σ0,−1X → X is an equivalence.

12



Theorem 3.13 ([Pst18, Thm. 4.36, Prop. 4.39]). The localization functor given by inverting τ
admits a refinement to a symmetric monoidal functor. The full subcategory of τ-invertible synthetic
spectra is equivalent to the category of spectra. The composition of functors

Sp
νE−→ SynE

τ−1

−→ Sp

is equivalent to the identity functor.

Next, we will present a first result relating “divisibility by τ” of maps in SynE and their E-
Adams filtration is the one that follows. Notably, a more computationally precise result along
these lines in [BHS19, Theorem 9.19].

Definition 3.14. The E-Adams filtration of a map of spectra f : X → Y is the minimum, if it exists,
over the integers k such that 0 ̸= f ∈ F k

E/F
k+1
E , where F •E is the decreasing filtration of MapSp(X , Y )

constructed for the E-based Adams spectral sequence [Ada74, Theorem 5.1].

In fact, by analising the filtration, we have that a map has E-Adams filtration at least k if it
can be written as a composite of k-many maps which are zero on E-homology.

Lemma 3.15 ([BHS19, Lemma 9.15]). If a map of spectra f : X → Y has E-Adams filtration at
least k, then there exists a factorisation

Σ0,kνY

νX νY.

τk

νE f

in SynE.

This gives one implication in the following.

Theorem 3.16 ([BHS19][Corollary 9.21]). Let X be an E-nilpotent complete spectrum with strongly
convergent E-based Adams spectral sequence. Then the filtration of πk(X ) given by

F sπk(X ) := im(πk,k+s(νX )
τ−1

−→ πk(X ))

coincides with the E-Adams filtration on πk(X ).

3.5. A synthetic Toda bracket

We finished Section 3.3 outlining the strategy for the proof of the main theorem, namely to bound
the HFp-Adams filtration of the Toda bracket associated to the data

S8n−2 Σ∞O〈4n− 1〉⊗2 Σ∞O〈4n− 1〉 S,
2(x⊗x)

0

1⊗J−m

f

0

J

a

for every prime number p. More precisely, we want to choose a homotopy f such that the resulting
Toda bracket has high enough HFp-Adams filtration – in the sense of Theorem 3.22 – to guarantee
that it is trivial modulo the image of J .

Observe that it suffices to bound the filtration of a Toda bracket obtained by substituting the
spectrum Σ∞O〈4n− 1〉 by an (8n− 1)-skeleton M , because the map M → Σ∞O〈4n− 1〉 is 8n-
connected. This replacement is justified by the following result.
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Lemma 3.17 ([BHS19, Lemma 10.4]). Let p be a prime. The HFp-Adams filtration of the p-
completed composite M∧p → Σ

∞O〈4n− 1〉∧p → S
∧
p is bounded below by

Np := ⌊
4n

2p− 2
⌋ − ⌊logp(4n)⌋

for p odd, and by
N2 := h(4n− 1)− ⌊log2(8n− 1)⌋ − 1

for p = 2, where h(k) is the number of positive integers less than or equal to k which are congruent
to 0, 1,2 or 4 modulo 8.

Convention 3.18. In the remaining of this section, we fix a prime p and all spectra are implicitly
p-completed.

To replace Σ∞O〈4n− 1〉 with its (8n− 1)-skeleton in the Toda bracket, we must present it in
a slightly different way because we can’t make sense of x2 in M , which no longer carries a ring
structure. Consider instead

S8n−2 S8n−2 M

S.

2

0

0

xJ(x)

J(x)2

f

h
J

g (9)

We can similarly form a Toda bracket ω ∈ π8n−1S, which is well defined after choosing homo-
topies issuing the commutativity of the above diagram. After choosing the canonical homotopies3

h: 2J(x)2 ≃ 0 and g : J(xJ(x)) ≃ J(x)2, it is shown in [BHS19, Lemma 6.7] that the class of ω
agrees with that of the previously defined Toda bracket z in coker(J)8n−1.

We proceed by explaining how to lift the diagram 9 to the one below in SynHFp
, via the syn-

thetic analogue functor νHFp
, so that we can recover 9 by the τ-inversion functor – cf. 3.13.

S8n−2,8n−2+2Np S8n−2,S8n−2,8n−2+2Np Σ0,NpνHFp
(M)

S0,0.

2

0

0

νHFp (x)y

y2

f̃

h̃

J̃g̃

(10)

We start by lifting x ∈ π4n−1(M) to νHFp
(x) ∈ π4n−1,4n−1νHFp

(M). By 3.17 and 3.15, we can
factor νHFp

(J) and obtain a map of synthetic spectra

J̃ : Σ0,NpνHFp
(M) −→ S0,0.

3By canonical, we mean the homotopies issuing the graded commutativity of the E∞ ring structure on S, and the
fact that J is a map of right S-modules, respectively.
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Since νHFp
underlies a symmetric monoidal functor, the commutative algebra structure on the

sphere spectrum is transfered to one on its synthetic analogue S0,0; similarly we get a module
structure on νHFp

(M) over S0,0. Thus we can make sense of y2, where we write y := J̃νHFp
(x);

and of νHFp
(x)y in νHFp

(M).
Finally, the following result assures the existence of a nullhomotopy f̃ completing diagram

10, thus giving a Toda bracket ω̃ ∈ π8n−2,8n−2+2Np
S0,0.

Proposition 3.19 ([BHS19, Proposition 10.7]). Let n ≥ 3 and s ≥ 2, then the bigraded homotopy
groups π8n−2,8n−2+sνHFp

(M∧p ) vanish. In particular, the group π8n−2,8n−2+Np
νHFp

(M∧p ) vanishes.

Theorem 3.20 ([BHS19, Theorem 10.8]). Let p be a prime number. There exists a nullhomotopy
f fitting in diagram 9 which induces a Toda bracket ω with HFp-Adams filtration greater than or
equal to 2Np − 1.

Proof. Choose f in 9 to be τ−1( f̃ ), for any nullhomotopy f̃ the existence of which is guaranteed
by Proposition 3.19. Then, by Theorem 3.13, the resulting Toda bracket ω is the image under
τ-inversion functor of the synthetic Toda bracket ω̃. In this situation, Theorem 3.16 gives that ω
has HFp-Adams filtration greater than or equal to (8n− 2+ 2Np)− (8n− 1) = 2Np − 1.

Remark 3.21. Observe that we have information about the Adams filtration of almost all maps
in diagram 9. Indeed, we know that J has Adams filtration at least Np, and this is preserved
by compositions, and doubled by products. But to establish the Adams filtration of the bracket
we need to appropiately choose homotopies f , g, h with high filtration. The ability to do so in
synthetic spectra, where the Adams filtration of a map is recorded by its “divisibility by τ”, seems
to be one of the key features of this theory. The other being that it avoids complications about the
monoidality of the Adams filtration by not considering the monoidal structure on the filtration,
but instead in the object mapping into the filtration. More precisely, the Adams spectral sequence
targeting the homotopy groups of a spectrum X is recovered in synthetic spectra by mapping S0,0

into the tower over νX given by multiplication by τ.

3.6. Proof of the main theorem

We finish by referencing upper bounds for the HFp-Adams filtration of elements outside the image
J , and prove that they imply the main result. For a prime number p > 2, denote by Γ n

p the minimal
integer m such that every element α in the p-localisation π8n−1S(p) with HFp-Adams filtration
strictly greater than m is in the image of J . Similarly, we write Γ n

2 for the minimal integer m
such that every element α ∈ π8n−1S(2) with HF2-Adams filtration strictly greater than m is in the
subgroup generated by the image of J and the µ-family.

Theorem 3.22. Let p be a prime number and n a positive integer. The following expressions are
upper bounds for Γ n

p :

• [DM89, Corollary 1.3] If p = 2, then Γ n
p < 3+ v2(n), where v2(k) is the 2-adic valuation of k.

• [BHS19, Theorem B7] If p = 3, then

Γ n
p <

25(8n− 1)
184

+ 19+
1133
1472

.

• [Gon00, Theorem 5.1] If p ≥ 3, then

Γ n
p < 3+

(2p− 1)(8n− 1)
(2p− 2)(p2 − p− 1)

.
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Proof. These follow from the cited references by [BHS19, Remark 7.9] and the fact that π8n−1S(p)
splits as a direct sum of the image of J and the kernel of the K(1)-local Hurewicz morphism.

Finally, we can conclude the proof of the main theorem.

Theorem 3.23 ([BHS19]). For all natural numbers n> 31, the kernel of the unit map

π8n−1S→ π8n−1 MO〈4n〉

is the image of the J-homomorphism.

Proof. By Lemma 3.5, it is enough to see that the referenced differential vanishes. By Lemma 3.8,
this will follow if the Toda bracket [z] ∈ coker(J)8n−1 vanishes. As mentioned before, this Toda
bracket identifies with ω by [BHS19, Lemma 6.7].

Finally, it suffices to show that if n > 31, then for every prime number p the HFp-Adams
filtration of ω is greater than Γ n

p . This is indeed also true for p = 2 because according to [BHS19,
Remark 7.4], the elements in theµ-family do not occur in dimension 8n−1. Note that, by Theorem
3.20, the Toda bracket ω has HFp-Adams filtration at least 2Np − 1.

It is shown in [BHS19, Lemma 7.15] that 2Np − 1 is strictly bigger than all the bounds in
Theorem 3.22 if p < 11 and n > 31. Now fix n > 31, and let p ≥ 11 be arbitrary. If 4p − 4 ≤ n,
then 2Np − 1 is strictly bigger than the bounds of Theorem 3.22. Otherwise, one can show by
hand that there are no non-zero elements in coker(J)(p) of dimension 8n− 1 4 – see the proof of
[BHS19, Theorem 7.1].
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