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Abstract

These are expository notes on the topic of synthetic spectra for the 2021 MSc course Topics
in Algebraic Topology at the University of Copenhagen. The goal of this notes is to setup the
thoery of synthetic spectra and its main properties. This is the first part of a two-part exposition
with Jan McGarry. These notes roughly follow [Pst18]. Any suggestions and/or corrections
are welcome.
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1 INTRODUCTION

The starting point for the study of synthetic spectra is the classical Adams spectral sequence.
One of the central problems of (stable) homotopy theory is the computation of homotopy groups
of spectra. The Adams spectral sequence introduced by Adams in [Ada74] has been the most
successfull tool for attacking this problem. Let us start by defining this spectral sequence.

Theorem 1.1. [Ada74] Let E be an Adams-type ring spectrum and Y a finite E-projective spec-
trum. If X is an arbitrary spectrum, there exists a convergent spectral sequence

E2
s,t ≃ Ext−s,t

E∗E
(E∗Y, E∗X )⇒ πs+t map(Y, X ∧E )

Let p be a prime. If we specify this result to E = HFp, Y = S and X finite connective, we have
the following sequence

E2
s,t ≃ Ext−s,t

Ap
(Fp, H∗(X ,Fp))⇒ πt+s(X

∧
p )
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converging to the p-adic completion of the homotopy groups of X . On another hand, we can also
define the p−Bockstein spectral sequence for X . We start with the filtration

· · ·
p
→ X

p
→ X

p
→ X

p
→ ·· ·

where X
p
→ X is the scalar multiplication map arising from S

p
→ S. Therefore we get the spectral

sequence
E1

s,t ≃ πt+s(X/p)⇒ πt+s(X
∧
p )[p

−1].

The nature of these spectral sequences is quite different from each other. Let us briefly compare
them:

1. One can argue that the Bockstein spectral sequence arises in a more natural way, for we
can produce the Bockstein filtration independently of X . This could imply that we might
be able to extract more information on its differentials. On the other hand, the Adams
filtration arises somewhat more misteriously and therefore extracting information on the
differentials is a running problem of this sequence.

2. However, one can also argue that the Adams spectral sequence is computationally more
advantageous, for its E2 page is purely algebraic, modulo computing the homology of X .
The E2 is usually called the Hopf algebra cohomology of Ap with coefficients in H∗(X ,Fp).
One usually calculates this groups with (relative) injective resolutions or using the May
spectral sequence. On the other hand, the homotopy groups of X/p := cof(p : X → X ) are
not easier than the ones of X , therefore this sequence is computationally disadvantageous.

On yet another perspective, the category of spectra has a natural t-structure given by connec-
tive and coconnective spectra. This produces the Postnikov tower

· · · → τ≥n+1X → τ≥nX → τ≥n−1X → ·· ·

for every spectrum X . Therefore, we have the (trivial) Postnikov spectral sequence

E1
s,t ≃ πs+t(Σ

sHπsX )⇒ πs+t X .

At first sight, this spectral sequence might appear useless and in fact, at least computationally, it
is. However, morally there is an important feature of the Postnikov tower: its associated graded
lies (up to suspensions) in the heart of Sp, which can be canonically identified with Ab. The
uselessness of this sequence lies on the fact that the notion of homotopy group intrinsic to the
category of spectra is the same as the notion arising from its t-structure. This will not be the case
in synthetic spectra. In this case, the "intrinsic" homotopy groups of objects in the heart will be
naturally identified with the Ext groups in the Adams spectral sequence.

One of the biproducts of the theory of synthetic spectra is that it provides a context where
the Adams spectral sequence of X arises as both a Bockstein spectral sequence and a Postnikov
spectral sequence and then hopefully unifying both perspectives. We will pick up this topic with
some applications in the next subsection.

1.1 Overview of the theory

In this section, we will try to overview the theory of synthetic spectra and present some examples.
In the end, we hope to touch on some applications of the synthetic deformation to study the
classical Adams spectral sequence.

We start with a (sufficiently commutative, e.g. E1) multiplicative cohomology theory E. For
such an E satifying some flatness conditions (e.g. Adams-type), the homology E∗E = π∗(E⊗[1])
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can be promoted to a Hopf algebroid in a prefered manner, which generalizes the case for E =
HF2 where we have a Hopf algebra. Goerss and Hopkins proved that the suitable category of
(co)modules over such Hopf algebroid can be generated by suitable compact projectives by en-
dowing this subcategory with a topology and taking product preserving sheaves. The category
of product preserving presheaves should be thought of as a completion of the indexing category
with respect to filtered colimits. The sheaf condition should account for exactness properties.

In order to lift this story to a homotopy theoretical setting, one should replace compact pro-
jective comodules by compact E-projective spectra. We arrive at the definition of SynE as product
preserving sheaves of spectra in the category of suitable compact E-projective spectra. Intuitively,
this should be thought of as deriving the category of spectra with respect to the cohomology
theory E where we resolve an arbitrary spectrum by its Adams filtration.

The main feature of SynE is that it is a one-parameter deformation of the category of spectra.
More precisely, there exists a map τ : S0,−1→ S0,0 such that we can identify Sp as the subcategory
of τ-local objects SynE[τ

−1] with help of the spectral Yoneda embedding. However, we can also
embed the category of spectra in synthetic spectra by the synthetic analogue functor

ν : Sp→ SynE

such that the Bockstein spectral sequence with respect to τ for νX can be identified with the
Adams spectral sequence of the spectrum X .

The map τ is a map of bigraded spheres, which are topological and weighted suspensions
of the synthetic analogue of the sphere spectrum. These are similar in nature to the bigraded
spheres arising in the motivic deformation of Sp. One important step to recover the Adams spectral
sequence is the following identification1.

[Ss+t,t , cofτ⊗ X ]≃ Ext−s,t
E∗E
(π∗E, E∗X )

We finish with some properties of the synthetic deformation. Firstly, we can form the (purely
formal) following stable recollement associated to the idempotent algebra S0,0. Intuitively, this
can thought of as a "split short exact sequence" of stable∞-categories. We will not pursue this
point of view.

Synτ−nil
E SynE SynE[τ

−1]≃ Sp

←→
j∗

← →j!

←→

j∗≃ j!

← →
i∗

← →
i!

←→

i∗

Moreover, we call the functor i∗, τ inversion and denote it by τ−1. On another hand, SynE has
a preferred t-strucute such that the functor ν can be expressed as the composition τ≥0 ◦ i∗ ◦ Y
where Y is the spectral Yoneda embedding. Finally, we can identify the τ-filtration quotients as
elements in StableE∗E, Hovey’s derived category of comodules. This category should encodes the
algebraic data of the Adams spectral sequence. Moreover, if we restrict to the essential image of
ν, the filtration quotient lies in objects concentrated in degree 0, i.e. in ComodE∗E.

1.1.1 Some examples

This section will present some examples of results on the structure of SynE for some familiar
(co)homology theories. In general it is very difficult to grasp the structure of SynE so we will only
focus on the extreme cases, the initial S and the "final" MU.

1In this formula, the Ext-group Exts,t
E∗E
(A, B) of two graded E∗E-comodules A and B is the t-graded part of the s-th

right derived functor of Hom(A,−) evaluated at B
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· · ·

Let us start with the (trivial example of the) sphere spectrum representing homotopy and
cohomotopy theories. This spectrum is Adams-type by [Ada74, Chapter III.13.3]. One can see
that the Hopf algebroid associated to S∗S is discrete2 which implies that ComodS∗S ≃Modπ∗S. Let
us start by identifying Modfp

π∗S
.

Claim 1. Any finite projetive π∗S-module is free.

Proof. This is a special case of [Lin71, Theorem 1], which states that locally finitely generated
π∗S-modules with finite projective dimension are free.

Therefore, it follows that any finite S-projective spectrum is equivalent to a wedge of spheres.
The product preserving condition implies that a synthetic spectrum is determined by its values
on spheres. Using a similar argument as in [Pst18, Theorem 6.2], we see that SynE is generated
under colimits by synthetic analogues of wedges of spheres. By [Pst18, Lemma 4.23], we see that
SynE is generated by synthetic analogues of spheres, that is bigraded spheres. This property is
called cellularity.

This example is (almost) worthless since the S−based Adams spectral sequence collapses in
the second page. This is true for any cohomology theory where π∗E is acyclic as a E∗E-comodule.
This behaviour suggests the following result.

Claim 2. The map τ is an equivalence. Therefore, the spectral Yoneda embedding Y : Sp→ SynS
is an equivalence.

Proof. This follows from the identification of the homotopy groups of cofτ as the E2 page of the
Adams spectral sequence which collapses. This implies that cofτ is equivalent to 0.

Cellularity recovers the fact that S generates Sp under colimits and shifts.

· · ·

Let us finish by mentioning the (non-trivial) identification of SynMU due to [Pst18] where MU is
the complex cobordism spectrum. Similarly to the previous case, any finitely generated projective
module over π∗(MU) is free [Pst18, Lemma 6.1]. We have the following result.

Theorem 1.2. [Pst18, Theorem 6.2] The category SynMU is cellular in the sense that it is generated
under colimits by the bigraded spheres.

To conclude, we present the main result in [Pst18]. Consider the subcategory Sp f pev
E of finite

spectra with E-homology finitely generated projective and concentrated in even degrees. Then
we can produce even synthetic spectra as the category Synev

E := ShΣ(Sp f pev
E ,Sp), which has very

similar properties. Denote by SpC the cellular motivic category which is defined as the smallest
subcategory of complex motivic spectra closed under colimits and containing bigraded spheres.
Then we have the following theorem which is the main application of the synthetic technology.
We will see in the next section an example of one of many applications of this theory. We expect
this theory to have a plethora of future applications.

Theorem 1.3. [Pst18, Theorem 1.4] There exists an adjoint pair Θ∗ : SpC ⇆ Synev
MU : Θ∗ which

induces an adjoint equivalence after p-completion.
2This holds whenever E is an idempotent ring spectrum, which is clearly true for S.
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1.1.2 Applications to Adams filtrations

In this short section, we will present some concrete applications of the synthetic deformation to
Adams filtrations of maps. These results are due to [BHS19, Section 9]. Let X be E-nilpotent
complete spectrum with strongly convergent E-Adams spectral sequence. Recall that a map x :
St → X has E-Adams filtration s if it can be written as a composition of s maps which are zero
in E-homology. This is one form of the Adams filtration on π∗X . Since τ−1νX = X , τ-inversion
gives a family of maps πt,t+sνX → πt X . We will focus on the following two results. The first result
makes precise the claim that τ-divisibility of a map coincides with its Adams filtration.

Proposition 1.1. [BHS19, Corollary 9.21] Let F ∗πt X be the filtration of π∗X given by

F sπt X := im(πt,t+sνX → πt X ).

In this situation, F ∗πt X coincides with the Adams filtration.

Proposition 1.2. [BHS19, Corollary 9.20] If a, b are integers such that πa,b+s(cofτ⊗νX ) vanishes
for all non-negative s. Then, it follows that

πa,b+sνX ≃ 0

for all s ≥ 0.

These two results combined provide a vanishing condition for certain high filtration elements
of the homotopy groups of X based on the vanishing of a certain line in the E2 page of its Adams
spectral sequence.

Corolary 1.1. If a, b are integers such that πa,b+s(cofτ ⊗ νX ) ≃ E2
a−b−s,b+s(X ) vanishes for all

non-negative s. Then, the k-th Adams filtration step AFkπaX ⊂ πaX vanishes for every k ≥ a− b.

1.2 Hopf algebroids and its comodules

We start by studying Hopf algebroids and its associated abelian category of comodules. Recall that,
intuitively, a Hopf algebra over a field k is an associative k-algebra H together with a diagonal
map∆ : A→ A⊗A making (H,∆) into a coassociative counital coalgebra such that both operations
are compatible.

Remark 1.1. Let H be a Hopf algebra over k with diagonal map ∆. For any other commuta-
tive algebra A over k, we have that coassociativity and counitality induce a group structure on
hom(H, A) given by hom(H, A)⊗ hom(H, A)→ hom(H ⊗H, A)→ hom(H, A). Therefore, the Hopf
algebra structure determines a lift of the corepresentable functor hom(H,−) : CAlgk → Set to
Groups. Formally, this lifting determines a cogroup object in the category of commutative alge-
bras. Moreover, this is equivalent to the structure of an affine group scheme Spec(H).

Definition 1.1. Let R be a (graded) commutative ring. A Hopf algebroid over R is a cogroupoid
object in the category of commutative algebras over R.

To unpack this definition, let us recall a general definition of a groupoid object in a category
C. A groupoid object in C is a functor X :∆op→ C such that for every n and S, S′ ⊂ [n] such that
S ∪ S′ = [n] and S ∩ S′ = {s} for some s ∈ [n], the following diagram is cartesian.

X ([n]) X (S′)

X (S) X ({s})

←→

←→ ←→

←→
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We can start by recovering the source and target maps as d1 and d0. On the other hand, the
decomposition {0,1} ∪ {1, 2} induces an isomorphism X2 → X1 ×X0

X1, provided that C admits
pullbacks. We can define the composition map X1 ×X0

X1 → X1 by first using the inverse of the
above isomorphism and post-composing it with d1. One can observe that the condition above
implies that X0 and X1 along with unit, source, target, inverse and composition map determine
the groupoid and therefore we will follow the tradition in Homotopy theory and abbreviate it as
(X0, X1).

· · ·

Dually, a cogroupoid object is a functor X : ∆ → C satisfying dual conditions. Let us now
present how to get a Hopf algebroid from a homotopy commutative ring spectrum E. Define the
following cosimplicial object in the category of commutative algebras in graded abelian groups,

X :∆→ CALg(grAb)

[n] 7→ π∗(E⊗[n])

where E⊗[n] is just the (n+ 1)−fold product of E remembering the ordering. Note that X0 = π∗E
and X1 = E∗E. In order for this cosimplicial object to be a groupoid, the map d2·d0 : E∗E⊗π1E E∗E→
π∗(E⊗E⊗E) is an isomorphism. This is not true in general. However, in the following Tor spectral
sequence.

E2
s,t = Torπ∗Es,t (E∗E, E∗E)⇒ π∗(E ⊗ E ⊗ E)

this is always the edge morphism and if E is Adams type, it is an isomorphism.
This sequence collapses since E∗E is flat as a π∗E-module3. The next proposition shows that

this is a sufficient condition for this cosimplicial object to be a groupoid. We will abbreviate this
groupoid by (π∗E, E∗E).

Proposition 1.3. Let E be a homotopy commutative ring spectrum such that E∗E is flat over π∗E.
In this situation, (π∗E, E∗E) is a Hopf algebroid over π∗E.

The main examples of such ring spectra are Adams-type ring spectra which include HFp for
any prime p and MU . The first example gives a Hopf algebra since the source and target maps
are the same, making it into a group object. This follows from the fact that there is a unique non-
trivial algebra map from π∗HFp ≃ Fp to HFp∗HFp. The same is not true for MU, which motivated
the definition of Hopf algebroid. This is the content of the Landweber-Novikov theorem which
identifies the Hopf algebroid structure of (π∗MU, MU∗MU). For the details, see [Rav86, 4.1.11
and A2.1.16].

· · ·

We can then define comodules over a Hopf algebroid and morphisms between them.

Definition 1.2. Let (A, Γ ) a Hopf algebroid. A comodule over (A, Γ ) is a module M over A along
with a Γ -linear map map

ε : d1∗M → d0∗M

satisfying the unit and cocycle conditions, where d j∗ is the extension of scalars with respect to
the map d j : A→ Γ . A morphism of comodules is a morphism of A-modules commuting with the
respective counit maps. Denote by ComodΓ the category of comodules over (A, Γ ).

3Here we consider E∗E as a right π∗E-module given by the map d1 which corresponds to the induced map of the
unit S→ E in E∗-homology.
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Remark 1.2. The notion of Γ -linear map ε : d1∗M → d0∗M is equivalent to the data of an A-linear
map ε : M → d1

∗ d
0∗M ≃ Γ ⊗M satifying appropriate conditions. Here we consider Γ has the left

A-module structure and its right A-module structure induces a module structure on Γ ⊗M .

Let (M ,ε) and (N ,µ) be Γ -comodules, we define its tensor product (M ,ε) ⊗ (N ,µ) as the
comodule (M ⊗A N ,ε⊗µ), where 4

ε⊗µ : d1∗(M ⊗A N)≃ d1∗M ⊗Γ d1∗N
ε⊗Γµ→ d0∗M ⊗Γ d0∗N ≃ d0∗(M ⊗A N).

The following proposition summarizes good categorical properties for the category of comod-
ules for a flat Hopf algebroid.

Proposition 1.4 ([Hov03]). The category (ComodΓ ,⊗) is (co)complete closed symmetric monoidal
abelian category, provided that Γ is a flat A-module. Moreover, given a morphism of Hopf alge-
broid φ : (A, Γ )→ (B,Σ) induces a symmetric monoidal functor φ∗ : ComodΓ → ComodΣ which
admits a right adjoint φ∗.

The first results that sets this category apart from ordinary abelian categories like module
categories is the following. Define the subcategory Comodfp

Γ of finitely generated projective co-
modules.

Theorem 1.4. If (A, Γ ) is a flat Hopf algebroid, then the Yoneda embedding

y : ComodΓ → ShΣ(Comodfp
Γ ,Set)

is an equivalence.

Remark 1.3. This property holds if we replace ComodΓ with any compactly generated Grothendieck
abelian category and Comodfp

Γ by a choice of compact generators. See further in section 2.5 in
[Pst18].

1.2.1 The derived category of stable comodules

In this section, we will briefly mention a way to construct a derived category of comodules over
a Hopf algebroids which aims to understand them as homotopy theoretic objects. Recall that
to any abelian category A, we can associate its derived category D(A) constructed by inverting
quasi-isomorphisms in the category of chain complexes in A. Let (A, Γ ) be in the conditions of 1.4.
In [Hov03], Hovey argues that D(A) doesn’t encode all the expected homotopical information.
To fix this, Hovey introduces a different notion of weak equivalence. Hovey starts by fixing an
injective resolution LA of A in ComodΓ .

Definition 1.3. Let M ∈ ComodΓ be a simple comodule (i.e. no nontrivial proper submodules)
and X be an arbitrary chain complex of comodules. We define the n-th homotopy group of X
with respect to M as πM

n X := [M[n], LA⊗ X ] as the homotopy classes of maps between chain
complexes.

We say that a map of chain complexes f : X → Y is a weak equivalence if it induces an isomor-
phism of all homotopy groups for all n ∈ Z and M simple. We define StableΓ as the localization
of unbounded chain complexes with respect to the previously defined weak equivalences. Un-
der some additional conditions (which will be satisfied when E is of Adams type), we have the
following result.

4One can show that flatness of d1 implies the flatness of d0 and therefore both d0∗ and d1∗ are symmetric monoidal.
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Theorem 1.5. [Pst18, Theorem 3.7] If (A, Γ ) is an Adams Hopf algebroid, then the Yoneda em-
bedding StableΓ → ShΣ(Comodfp

Γ ,Sp) is an equivalence.

We will see that this implies that the heart of the natural t-structure coming from chain com-
plexes is equivalent to ComodΓ . This category recovers the information of the Adams spectral
sequence in the following way.

Proposition 1.5. Let X , Y be comodules viewed as chain complexes concentrated in degree 0. In
this situation, there exists a canonical equivalence

[X , Y ]n := πn(mapStableΓ
(X , Y ))≃ πn(mapD(ComodΓ )(X , Y ))≃ Ext−n

Γ
(X , Y ).

2 SYNTHETIC SPECTRA

Recall that 1.4, gives us that the Yoneda embedding ComodΓ → ShΣ(Comodfp
Γ ,Set) is an equiva-

lence and that by 1.5 we have an equivalence StableΓ ≃ ShΣ(Comodfp
Γ ,Sp). On the other hand,

we will see in 2.3 that the E-homology functor E∗ : Spfp
E → ComodE∗E induces an equivalence on

spherical sheaves of sets. Motivated by this results, we define synthetic spectra in the following
way.

Definition 2.1. Let E be a Adams-type ring spectrum. The ∞-category of synthetic spectra is
SynE := ShΣ(Spfp

E ,Sp)where Spfp
E is the category of finite E-projective spectra, that is finite spectra

X such that E∗X is projective as a π∗E-module.

Remark 2.1. This definition depends on the definition of the Grothendieck topology on Spfp
E

defined in 2.5.

We will see that we can embed the category of spectra in the category of synthetic spectra
associated to E via the construction of the synthetic analogue of a spectrum. We construct it
as follows. Let X be a spectrum, then notice that y(X ) := homSp(−, X ) is a product preserving
presheaf of spaces. We can define the synthetic analogue νX of X as Σ∞+ y(X ), where y : Sp→
ShΣ(Spfp

E ) and Σ∞+ is the left adjoint to Ω∞. The remainder of this section is devoted to study
categorical properties of SynE and the functor ν : Sp→ SynE. This requires us to study the more
general contexts of∞-categories of spherical spherical sheaves on certain∞-sites.

2.1 Spherical sheaves of anima and spectra

In this section, we will discuss the formal categorical properties of a general category of spherical
sheaves. This category will not arrive as a category of sheaves, but we will prove various results
that show that this category mimics the behaviour of such categories.

Remark 2.2. We will start by establishing these "hygenic" properties and structures for categories
of sheaves of anima. We will see that considering the analog of sheaves of spectra (which specifies
to our context) is a model for the stabilization of the above category. Therefore most of these
properties will be preserved and structures will be chosen canonically in sheaves of spectra.

2.1.1 Main properties of spherical sheaves

Let C be an additive∞−category, i.e. it admits finite products and finite coproducts, they agree
and its homotopy category is additive. Denote by PShΣ(C) the∞-category of spherical (i.e. prod-
uct preserving) presheaves of anima. By [Lur17, Propostion 2.4.5.5] , this category is additive.
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In order to define spherical sheaves, one should now consider a particular type of ∞-sites
where the underlying additive structure is compatible with the covering data. This means that
we should expect the correspondent functor of sheafification to preserve the sphericity of the
presheaf. In this spirit, we define the following notion.

Definition 2.2. An additive∞-site is a small∞-site C which is additive as an∞−category such
that every covering sieve is generated by a single map.

The first advantage of this definition lies in the following result.

Proposition 2.1. [Pst18, Propositions 2.5 and 2.6] Let C be an additive∞−site. In this situation,
the sheafification functor L : PSh(C) → Sh(C) takes spherical presheaves to spherical sheaves.
Moreover, we can consider its restriction of L to PShΣ(C) → ShΣ(C) and it is an acessible left
exact localization. In particular, ShΣ(C) is presentable.

We have a recognition principle for spherical spectra that allows us to prove that ShΣ(C) is
closed under filtered colimits as a subcategory of PShΣ(C).

Theorem 2.1. [Pst18, Theorem 2.8] Let C be an additive ∞-site. If X ∈ PShΣ(C), then the
following are equivalent:

1. X is a spherical sheaf,

2. For every fiber sequence F → B→ A where B→ A is a generated by a covering sieve, then
X (A)→ X (B)→ X (F) is a fiber sequence.

Remark 2.3. When we consider C= ComodΓ with the epimorphism topology, the second condi-
tion amounts to asking that X takes short exact sequences to fiber sequences.

An immediate corolary of the previous theorem is the following.

Corolary 2.1. The full subcategory ShΣ(C) ⊂ PShΣ(C) is closed under filtered colimits, therefore
they are computed pointwise.

Proof. This follows immediatly from the recognition principle and the fact that the filtered colimits
commute with finite limits and in particular commute with fiber sequences.

2.1.2 Symmetric monoidal structures

It turns that in the context of synthetic spectra, there is a natural symmetric monoidal structure
on SynE . This will be more general in the context of a particular type of∞-site that is compatible
with an underlying symmetric monoidal structure.

Definition 2.3. An excellent∞−site is a symmetric monoidal category C⊗ admitting duals along
with a topology on C := C⊗〈1〉 making it into an additive∞-site such that the functor c⊗− : C→ C
takes coverings to coverings for every c ∈ C.

Remark 2.4. Once again this property will be verified for C = ComodΓ if the tensor product
preserves surjections.

Remark 2.5. By looking at [Lur17, p. 4.8.1], if C is symmetric monoidal, then Day convolution will
endow PSh(C) with the unique symmetric monoidal structure such that the Yoneda embedding is
symmetric monoidal and the tensor product preserves colimits in each variable.
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Remark 2.6. Let us set some terminology with respect to symmetric monoidal category. Let
f : C→ D be a map of∞−categories. Recall that a symmetric monoidal category is a cocarte-
sian fibration C⊗ → Fin∗ satisfying the Segal condition. The following is an explanation of the
terminology used in the coming theorems.

• When we say "C can be promoted to a symmetric monoidal category" it means that there exists
a functor C⊗→ Fin∗ and an identification of the fiber over the (pointed) set 〈1〉 with C.

• Fix a symmetric monoidal category C⊗ → Fin∗ such that C is identified with the fiber over
〈1〉. Let X be the space of diagrams of the following form

C⊗ D⊗

Fin∗

←→

←→
←→

such that the vertical map preserves cocartesian edges and the fiber of D⊗ → Fin∗ can be
identified with D and under this identification the induced map on the fibers over 〈1〉 is f .
We say that "D and f can be simultaneosly promoted to a symmetric monoidal category and
symmetric monoidal functor" or "D and be promoted to a symmetric monoidal category such
that f is symmetric monoidal if X is non-empty. If in addition, this space is contractible we
say that this promotion is unique.

The following result extends the previous remark to spherical sheaves. We say that the Day
convolution is compatible with a localization C → S−1C if it preserves S-local equivalences.

Theorem 2.2. [Pst18, Proposition 2.27] If C is an excellent ∞−site, then Day convolution is
compatible with the localization L : PShΣ(C)→ ShΣ(C). Therefore, ShΣ(C) can be uniquely pro-
moted to symmetric monoidal category that preserves colimits on each variable and promotes the
Yoneda embedding to a symmetric monoidal functor.

2.1.3 Sheaves of spectra and its t-structure

Let C be a small additive∞−site and denote by ShΣ(C,Sp) its category of sheaves of spectra. We
start by stating the previously announced result.

Theorem 2.3. The category ShΣ(C,Sp) is the stabilization of ShΣ(C). In particular, it is a pre-
sentable stable∞-category.

We will now define a t-structure with good properties. We start by defining the homotopy
groups πnX of a sheaf of spectra X as the sheafification of the composite πn ◦ X : Cop→ Ab.

Definition 2.4. Let X ∈ ShΣ(C,Sp), we call X connective if πnX for n < 0. In turn, we call X
coconnective ifΩ∞X is a discrete sheaf of spaces. We denote by (ShΣ(C,Sp))≥0 and (ShΣ(C,Sp))≤0

the full subcategories of connective and coconnective sheaves of spectra repectively.

Proposition 2.2. [Pst18, Proposition 2.16] The pair ((ShΣ(C,Sp))≥0, (ShΣ(C,Sp))≤0) determines
a right complete t-structure on ShΣ(C,Sp) compatible with filtered colimits. Moreover, we have
an equivalence ShΣ(C,Sp)♥ ≃ ShΣ(C,Sp).

We will finish this section by discussing symmetric monoidal structures on ShΣ(C,Sp). The
following presents an important property of ShΣ(C,Sp).

Proposition 2.3. [Pst18, Proposition 2.19] The functor Ω∞ : ShΣ(C,Sp)→ ShΣ(C) admits a fully
faithful left adjoint Σ∞+ whose essential image is (ShΣ(C,Sp))≥0.

10



This functor will fix our induced symmetric monoidal structure oin ShΣ(C,Sp). This structure
will have the universal property that the data of a symmetric monoidal functor out of ShΣ(C,Sp) to
another symmetric monoidal stable category D is equivalent to the data of a symmetric monoidal
functor from ShΣ(C) to D.

Theorem 2.4. The category ShΣ(C,Sp) can be promoted to a unique symmetric monoidal struc-
ture such that tensoring preserves colimits in each varible and the functor Σ∞+ is symmetric
monoidal.

2.2 The∞-category SynE

We now return to our context of synthetic spectra for an Adams-type ring spectrum. We start
by defining the latter and establish some of its properties which will be necessary to establish
favourable properties of SynE .

2.2.1 Adams-type spectra

In this short section, we will present Adams-type spectra, which will be main characters of our
study. The advantage of the restriction to this family of spectra lies in 2.5, which allows 2.5 and
2.3 in the next sections. This definition was introduced by Adams in [Ada74].

Definition 2.5. Let E be a homotopy commutative ring spectrum. We call E of Adams-type if it
can be expressed as a filtered colimit colimI Ei where Ei are finite E-projective spectra such that
the canonical map E∗Ei → Homπ∗E(E∗Ei,π∗E) is an equivalence.

Remark 2.7. Since E can be expressed as a filtered colimit, one can see that E∗E = colim E∗Ei is
a filtered colimit of projectives and therefore flat as a π∗E-module.

The first crucial result of this definition is the following.

Theorem 2.5 (Tor Spectral Sequence). [Ada74] Let X , Y be spectra and E a homotopy commu-
tative ring spectrum such that E∗E is flat as π∗E-module. There exists a spectral sequence

E2
s,t ≃ Tors,t

π∗E
(E∗X , E∗Y )⇒ E∗(X ⊗ Y ).

The second and last result used in the rest of our study is the following.

Proposition 2.4. [Pst18, Theorem 3.25] The morphism of ∞-sites E∗(−) : Spfp
E → Comodfp

E
admits a common envelope.

Let E be an Adams-type ring spectrum. In this section, we will take fruits of the general
framework developed in the previous sections. In order to do so, one has to prove that Spfp

E
admits the structure of a excellent∞-site.

2.2.2 The∞-site Spfp
E

The goal of this section is to prove the following result.

Proposition 2.5. The∞−category Spfp
E admits a topology promoting it to an excellent∞-site

such that the homology functor E∗(−) : Spfp
E → Comodfp

E∗E
is a morphism of excellent∞-sites.

We will start by noticing that this category is additive.

Lemma 2.1. The ∞−category Spfp
E is additive and the homology functor E∗(−) is an additive

functor.

11



Proof. We start by proving the last claim, i.e. the homology functor preserves finite coproducts.
But this follows directly from the fact that E represents a generalized homology theory which
satisfies the additivity axiom. Therefore finite coproducts of finite projective spectra is finite pro-
jective. Since finite coproducts and products agree in Sp, one sees that the inclusion of Spfp

E also
preserves finite products. One another hand, fully faithfullness descends to homotopy categories.
Thus, since hSpfp

E contains the zero object and finite products and coproducts, it follows that it is
additive (as it is a full subcategory of an additive category).

We notice that the last lemma still holds for arbitrary ring spectra, however the next lemma
exemplifies the necessity of Adams-type condition.

Lemma 2.2. If X ∈ Spfp
E and Y is an arbitrary spectrum, then E∗(X ⊗ Y )≃ E∗X ⊗ E∗Y. Therefore,

the smash product of spectra endows Spfp
E with a structure of a symmetric monoidal∞−category

such that the homology functor is symmetric monoidal.

Proof. We procceed again by proving the last claim. In [Ada74, Section III.13], Adams proves that
if E is Adams-type then, we have the following Kunneth spectral sequence for arbitrary spectra X
and Y ,

E2
s,t ≃ Tors,t

π∗E
(E∗X , E∗Y )⇒ Es+t(X ⊗ Y )

Therefore if X is E-projective, this sequence collapses on the second page and the result fol-
lows. By this result, we have that smash product preserves finiteness and E-projectiveness. One
can check that π∗E is a projective E∗E-comodule and thus the unit of the smash product is in
Spfp

E .Therefore promotes Spfp
E into a symmetric monoidal subcategory.

Remark 2.8. [Pst18, Lemma 3.18] A minor part in the definition of excellent∞-site is the exis-
tence of duals. One can verify that the Spanier-Whitehead dual of a finite projective spectrum is
finite projective.

We finish by defining the topology on Spfp
E in the following way: {Q i → P}i∈I is a covering

family if it consists of a single map which is a covering after taking homology.

Proof of 2.5. We start by proving that this definition endows Spfp
E with the structure of an ∞-

site. Clearly, equivalences induce surjections on homology so they are coverings. One another
another hand, compositions of surjections are surjections. One can also see that since pullbacks
of surjections are surjections, therefore it suffices to prove that homology preserves pullbacks of
homology surjections in Spfp

E . Let X , Y, Z ∈ Spfp
E , a homology surjection X → Y and a map Z → Y.

Notice that we have a fiber sequence X ×Y Z → X ⊕ Z → Y. By taking long exact sequence on
homology and since Y is projective and X ⊕ Z → Y surjective, it splits in short sequences and the
result follows.

It remains to show that that smashing with any X ∈ Spfp
E preserves homology surjections. But

this follows from left exactness of the tensor product and the fact that homology is a symmetric
monoidal functor.

2.2.3 Main properties of SynE

Returning to our context of synthetic spectra, we now are able to deduce various categorical
properties of SynE .

Proposition 2.6. The category SynE is a presentable stable ∞-category. Moreover, it can also
be promoted to a symmetric monoidal structure in a prefered way such that its tensor product
preserves colimits in every variable.
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Proof. By 2.5, we can see that SynE is the category of spherical sheaves of spectra in an excellent
site. Therefore, by 2.3 it presentable and stable, and by 2.4 it has a canonical symmetric monoidal
structure such that its tensor product preserves colimits in every variable.

Proposition 2.7. The synthetic analogue functor ν : Sp→ SynE is lax symmetric monoidal and
preserves filtered colimits. Moreover, this functor is symmetric monoidal when restricted to finite
E-projective spectra.

Proof. Recall that νX is defined to be Σ∞+ y(X ). Since by 2.2 and 2.4, sheafification and Σ∞+ are
symmetric monoidal and commute with colimits, it suffices to prove that the Yoneda embedding
is lax symmetric monoidal and preserves filtered colimits. On the one hand, finite spectra are
compact and therefore the latter claim follows. Again by 2.2, we see that Yoneda embedding
restricted to Spfp

E is symmetric monoidal. We claim that the Yoneda embedding has a symmetric
monoidal left adjoint and therefore it is lax symmetric monoidal. By taking the left Kan exten-
sion of the inclusion Spfp

E ⊂ Sp along the Yoneda embedding for Spfp
E , one can check that this

provides a left adjoint for the Yoneda embedding. Since the inclusion and the restricted Yoneda
are symmetric monoidal, the left Kan extension is symmetric monoidal.

In general, this functor doesn’t preserve cofiber sequences. However, the following result is a
sufficient condition for when it does.

Proposition 2.8. [Pst18, Lemma 4.23] If A → B → C is a cofiber sequence in Sp, then the
following are equivalent:

1. νA→ νB→ νC is a cofiber sequence,

2. 0→ E∗A→ E∗B→ E∗C → 0 is a short exact sequence in ComodE∗E.

2.2.4 The t-structure on SynE and its heart

The goal of this subsection is to prove the following result.

Proposition 2.9. The ∞-category SynE admits a right complete t-tructure compatible with fil-
tered colimits. Moreover, there exists an equivalence Syn♥E ≃ ComodE∗E.

The first statement of this result will be purely formal in the theory of spherical sheaves fol-
lowing from 2.2. Moreover, by the same result, there exists an equivalence Syn♥E ≃ ShΣ

Set(Spfp
E ).

Therefore, the second statement will follow from the following lemma.

Lemma 2.3. The morphism of∞-sites E∗(−) : Spfp
E → Comodfp

E induces an equivalence

E∗ : ShΣ(Spfp
E ,Set)≃ ComodE∗E

This lemma will follow from a special case of a more general result that answers the following
question: When does a morphism of excellent ∞−sites induces an equivalence on spherical sheaf
categories?

Let f : C→ D be a morphism of excellent∞−sites, we know that we can define an induced
functor f ∗ : ShΣ(C,Set)→ ShΣ(D,Set) induced by precomposition on presheaf categories. How-
ever, we can define the functor f! : ShΣ(D,Set) → ShΣ(C,Set) by taking the left Kan extension
of the Yoneda embedding along the precomposition of f with the Yoneda embedding of D. By
abstract reasons, one can check that f! is left adjoint to f ∗.

Theorem 2.6. [Pst18, Theorem 2.26 and Remark 2.27] Let f : C→ D be a morphism of excellent
∞-sites. If f reflects covers and admits a common envelope, then the adjunction f! ⊣ f ∗ is an
adjoint equivalence.

Proof of 2.3. By 2.6, it suffices to show that the homology functor reflects covers and admits a
common envelope. By definition, the former is satisfied. The second claim is the content of
[Pst18, Theorem 3.25].
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3 CONCLUSION AND PREVIEW FOR NEXT TALK

We will conclude by introducing one of the defining features of SynE. This property stems from
the fact the the functor ν : Sp→ SynE does not preserve suspensions. To control this fact, we will
define bigraded spheres in the following way.

Definition 3.1. Define the (t, w)−sphere as St,w := Σt−wνΣwS. Moreover, for X , Y ∈ SynE
we define the Y -homology and cohomology of X as Yt,wX = π0 map(St,w, Y ⊗ X ) and Yt,wX =
π0 map(St,w ⊗ Y, X ).

For the case where Y = S0,0, we call the Y−homology of X its homotopy groups. Notice that
we can issue the first remark of this section by considering the canonical colimit map S−1,−1 =
νΩS→ ΩνS = S−1,−1. We will call this map τ ∈ π−1,−1S−1,0 ≃ π0,−1S0,0. The result that initiates
the study of this map is the following.

Proposition 3.1. The cofiber sequenceΣ−1,0νX → νX → cofτ⊗νX identifies cofτ⊗νX ≃ (νX )≤0.
Moreover since νX is connective, we have cofτ⊗ X ∈ Syn♥E ≃ ComodE∗E.

Intuitively, this means that that the obstruction for νX taking suspensions to loops as a sheaf
of spectra can be encoded as a comodule of E∗E. This map induces a filtered spectrum

. . .→ Σ0,−1νX −→ νX −→ Σ0,1νX → . . . .

We call its associated spectral sequence the τ−Bockstein spectral sequence. On the other hand,
we can define the spectral Yoneda embbeding Y : Sp→ SynE and get the following result.

Proposition 3.2. Let X be a spectrum. In this setting, the tower by powers of τ

. . .→ Σ0,−1νX −→ νX −→ Σ0,1νX → . . .

can be identified with the Whitehead tower of Y (X ) in SynE.

We remark that this implies that Y (X ) is therefore the localization of νX with respect to τ.
Intuitively, the above proposition implies that the τ−Bockstein spectral sequence of X can be
identified with the Whitehead spectral sequence of Y (X ). Analysing the associated graded of the
τ-Bockstein filtration, we see the following result.

Proposition 3.3. [Pst18, Lemma 4.56] If X is a spectrum, then there exists an equivalence

πt,s(cofτ⊗ νX )
≃
→ Exts−t,s(π∗E, E∗X ).

The next talk will explain how to identify the Adams filtration of X with the above filtrations
and also analyse the algebraic part of synthetic spectra shining a new light on ComodE∗E.

A SHORT REMARKS ON CHANGE OF RINGS

In this appendix, we will look at the functorial properties of the construction of synthetic spectra.
Let Adams be the full subcategory of homotopy commutative ring spectra consisting of Adams-
type spectra. We start with the following lemma.

Lemma A.1. If f : E → E′ is a map of Adams type ring spectra, then every finite E∗−projective
spectrum X is finite E′∗-projective. More precisely, we that the canonical map

E∗X ⊗π∗E π∗E
′→ E′∗X

is an isomorphism in ComodE′∗E
′ .
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Proof. Start by noticing that E′⊗X ≃ E⊗E E′⊗X . Therefore we have the Kunneth spectral sequence

E2
s,t ≃ Torπ∗E

′

s,t (π∗(E ⊗ X ),π∗E
′)⇒ πt−s(E

′ ⊗ X )

which collapses. Therefore, the edge morphism is an isomorphism and since projectiveness is
preserved under change of base, the lemma follows.

Moreover, we can check that the inclusion Spfp
E ⊂ Spfp

E′ is a morphism of excellent ∞−sites,
and therefore by [Pst18, Theorem 2.21], we have the following adjunction

f! ⊣ f ∗ : SynE ⇄ SynE′

such that f ∗ is t-exact, f! is right exact and f! is the unique cocontinuous functor making the
following diagram commute.

SynE

Sp SynE′

←→ f!← →Y

←→
Y

The above remarks imply that the synthetic spectra construction is functorial Syn(−) : Adams→
Cat∞. Moreover the latter remark implies that the essential image of this functor is the nerve of
a poset. This indicated that the construction depends on much less data than the ring spectrum
E. Since S is initial in Adams and by the above identification of SynS and SynMU, we recover the
result that no map of spectra MU→ S can be promoted to a map of ring spectra.
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